Telegram Group & Telegram Channel
Artificial life forms в компьютерных симуляциях

в выходные закончил обещанный обзор статьи Sakana AI, который давно обещал сделать, прошу прощения! свободного времени мало, и становится только меньше. а текст вырос в лонгрид. пробно опубликовал его на хабре — иллюстрации тут сильно помогают. если вы там бываете, буду рад плюсам и комментариям. а ниже саммари для вас любимых, погнали 👽

Рисерчеры из Sakana AI, которые до этого наделали много шума со своим ИИ-ученым, автономно генерирующим правдоподобные научные статьи, исследуют разные области науки, где ИИ может дать заметный толчок. поиск искусcтвенных форм жизни в компьютерных симуляциях оказался одной из них. мотивация для всей области следующая

— изучать жизнь не только какой мы ее знаем, но и такой какой она могла бы быть
— ну и создать голема, пускай цифрового, потому что это давняя мечта любого алхимика

я до этого рассказывал про игру “Жизнь” Конвея, где поиск своеобразных форм жизни (глайдеров, осцилляторов и космических кораблей) происходит уже 54 года силами энтузиастов. при этом “Жизнь” — только частный случай подобных симуляций, есть более сложные, и намного менее исследованные: Boids, Lenia, ParticleLife, Neural Cellular Automata и другие, отличающимися правилами перехода пикселей из живых в мертвые и обратно, детали со ссылками статье

ключевая проблема в том, что с такими эволюционирующими хаотическими системами очень сложно предсказывать как они будут развиваться. и еще сложнее специально задать условия, которые приведут к интересным результатам, например зарождению той самой "жизни", как бы вы ее не определяли. при этом у каждой симуляции, заданной даже простыми правилами, есть десятки тысяч комбинаций параметров (соседи не в квадрате, а в круге, погибает не при 4 соседях а при 5, и так далее). то есть мало того, что нужно эти симуляции нужно просчитывать на тысячи шагов времени вперед, так нужно это делать для тысяч комбинаций входных параметров каждой из них, что превращает задачу поиска интересных форм эволюции в них сопоставимой по относительным масштабам поиску внеземного разума в открытом космосе

и вот тут на помощь пришел ИИ. Sakana взяли опен-сорсную модель CLIP (Contrastive Language–Image Pre-training) от openAI, которая была обучена для генерации текстовых описаний изображений в духе "на этой фотографии три человека стоят у барной стойки". это позволило исследователям программировать поиск "жизни" текстом, то есть буквально “ищи изображения похожие на клетки под микроскопом” или "нечто похожее на скопления нейронов". и она нашла!

такой подход авторы назвали ASAL — Automated Search for Artificial Life, и он позволил в каждой из упомянутых симуляций найти новые формы жизни, иногда удивительно похожие на биологические объекты — клетки, вирусы, бактерии, скопления нейронов. другое направлений исследований — поиск симуляций, где сложность форм жизни продолжает расти со временем неограниченно, прямо как в нашей с вами. здесь был предложен метод сведения этой сложности, которая очень плохо формализуема классическими алгоритмами, к численным метрика в пространстве эмбеддингов CLIP

при этом все описанные выше симуляции определяются очень простыми правилами двумерного мира и ничего не знают о биологии, поэтому случайное образование кластеров пикселей, сильно похожих на бактерии и вирусы — конечно может оказаться невероятным совпадением или артефактом постановки эксперимента (что искали в хаотичной системе, то и нашли), но также могут обозначить границы нового раздела науки, изучающего внутреннюю динамику этих микромиров, которые могут оказаться не менее богатыми, чем наш собственный (если поддерживать вычисления пару миллиардов лет)

мой полный текст: https://habr.com/ru/articles/879230/
ссылка на оригинальную статью и гитхаб

#AI #automated_research #evolution #complexity



tg-me.com/levels_of_abstraction/84
Create:
Last Update:

Artificial life forms в компьютерных симуляциях

в выходные закончил обещанный обзор статьи Sakana AI, который давно обещал сделать, прошу прощения! свободного времени мало, и становится только меньше. а текст вырос в лонгрид. пробно опубликовал его на хабре — иллюстрации тут сильно помогают. если вы там бываете, буду рад плюсам и комментариям. а ниже саммари для вас любимых, погнали 👽

Рисерчеры из Sakana AI, которые до этого наделали много шума со своим ИИ-ученым, автономно генерирующим правдоподобные научные статьи, исследуют разные области науки, где ИИ может дать заметный толчок. поиск искусcтвенных форм жизни в компьютерных симуляциях оказался одной из них. мотивация для всей области следующая

— изучать жизнь не только какой мы ее знаем, но и такой какой она могла бы быть
— ну и создать голема, пускай цифрового, потому что это давняя мечта любого алхимика

я до этого рассказывал про игру “Жизнь” Конвея, где поиск своеобразных форм жизни (глайдеров, осцилляторов и космических кораблей) происходит уже 54 года силами энтузиастов. при этом “Жизнь” — только частный случай подобных симуляций, есть более сложные, и намного менее исследованные: Boids, Lenia, ParticleLife, Neural Cellular Automata и другие, отличающимися правилами перехода пикселей из живых в мертвые и обратно, детали со ссылками статье

ключевая проблема в том, что с такими эволюционирующими хаотическими системами очень сложно предсказывать как они будут развиваться. и еще сложнее специально задать условия, которые приведут к интересным результатам, например зарождению той самой "жизни", как бы вы ее не определяли. при этом у каждой симуляции, заданной даже простыми правилами, есть десятки тысяч комбинаций параметров (соседи не в квадрате, а в круге, погибает не при 4 соседях а при 5, и так далее). то есть мало того, что нужно эти симуляции нужно просчитывать на тысячи шагов времени вперед, так нужно это делать для тысяч комбинаций входных параметров каждой из них, что превращает задачу поиска интересных форм эволюции в них сопоставимой по относительным масштабам поиску внеземного разума в открытом космосе

и вот тут на помощь пришел ИИ. Sakana взяли опен-сорсную модель CLIP (Contrastive Language–Image Pre-training) от openAI, которая была обучена для генерации текстовых описаний изображений в духе "на этой фотографии три человека стоят у барной стойки". это позволило исследователям программировать поиск "жизни" текстом, то есть буквально “ищи изображения похожие на клетки под микроскопом” или "нечто похожее на скопления нейронов". и она нашла!

такой подход авторы назвали ASAL — Automated Search for Artificial Life, и он позволил в каждой из упомянутых симуляций найти новые формы жизни, иногда удивительно похожие на биологические объекты — клетки, вирусы, бактерии, скопления нейронов. другое направлений исследований — поиск симуляций, где сложность форм жизни продолжает расти со временем неограниченно, прямо как в нашей с вами. здесь был предложен метод сведения этой сложности, которая очень плохо формализуема классическими алгоритмами, к численным метрика в пространстве эмбеддингов CLIP

при этом все описанные выше симуляции определяются очень простыми правилами двумерного мира и ничего не знают о биологии, поэтому случайное образование кластеров пикселей, сильно похожих на бактерии и вирусы — конечно может оказаться невероятным совпадением или артефактом постановки эксперимента (что искали в хаотичной системе, то и нашли), но также могут обозначить границы нового раздела науки, изучающего внутреннюю динамику этих микромиров, которые могут оказаться не менее богатыми, чем наш собственный (если поддерживать вычисления пару миллиардов лет)

мой полный текст: https://habr.com/ru/articles/879230/
ссылка на оригинальную статью и гитхаб

#AI #automated_research #evolution #complexity

BY уровни абстракции




Share with your friend now:
tg-me.com/levels_of_abstraction/84

View MORE
Open in Telegram


LEVELS_OF_ABSTRACTION Telegram Group Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Can I mute a Telegram group?

In recent times, Telegram has gained a lot of popularity because of the controversy over WhatsApp’s new privacy policy. In January 2021, Telegram was the most downloaded app worldwide and crossed 500 million monthly active users. And with so many active users on the app, people might get messages in bulk from a group or a channel that can be a little irritating. So to get rid of the same, you can mute groups, chats, and channels on Telegram just like WhatsApp. You can mute notifications for one hour, eight hours, or two days, or you can disable notifications forever.

LEVELS_OF_ABSTRACTION Telegram Group from it


Telegram уровни абстракции
FROM USA